A pilot study to integrate HIV drug resistance gold standard interpretation algorithms using neural networks

dc.contributor.authorSingh, Y.
dc.contributor.authorMars, M.
dc.contributor.otherCentral University of Technology, Free State, Bloemfontein
dc.date.accessioned2015-10-05T10:26:53Z
dc.date.available2015-10-05T10:26:53Z
dc.date.issued2013
dc.date.issued2013
dc.descriptionPublished Articleen_US
dc.description.abstractThere are several HIV drug resistant interpretation algorithms which produce different resistance measures even if applied to the same resistance profile. This discrepancy leads to confusion in the mind of the physician when choosing the best ARV therapy.en_US
dc.format.extent279 496 bytes, 1 file
dc.format.mimetypeApplication/PDF
dc.identifier.issn16844998
dc.identifier.urihttp://hdl.handle.net/11462/639
dc.language.isoen_USen_US
dc.publisherJournal for New Generation Sciences, Vol 11, Issue 2: Central University of Technology, Free State, Bloemfontein
dc.relation.ispartofseriesJournal for New Generation Sciences;Vol 11, Issue 2
dc.rights.holderCentral University of Technology, Free State, Bloemfontein
dc.subjectMachine learningen_US
dc.subjectArtificial intelligenceen_US
dc.subjectNeural networksen_US
dc.subjectHIV drug resistanceen_US
dc.titleA pilot study to integrate HIV drug resistance gold standard interpretation algorithms using neural networksen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Singh, Y.-Mars, M Pages 88-102.pdf
Size:
279.74 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: