Coordination control of robot manipulators using flat outputs

Loading...
Thumbnail Image

Date

Authors

Markusa, Elisha D.
Yskander, Hamam
Ageeb, John T.
Jimoh, Adisa A.

Journal Title

Journal ISSN

Volume Title

Publisher

Robotics and Autonomous Systems

Abstract

This paper focuses on the synchronizing control of multiple interconnected flexible robotic manipulators using differential flatness theory. The flatness theory has the advantage of simplifying trajectory tracking tasks of complex mechanical systems. Using this theory, we propose a new synchronization scheme whereby a formation of flatness based systems can be stabilized using their respective flat outputs. Using the flat outputs, we eliminate the need for cross coupling laws and communication protocols associated with such formations. The problem of robot coordination is reduced to synchronizing the flat outputs between the respective robot manipulators. Furthermore, the selection of the flat output used for the synchronizing control is not restricted as any system variable can be used. The problem of unmeasured states used in the control is also solved by reconstructing the missing states using flatness based interpolation. The proposed control law is less computationally intensive when compared to earlier reported work as integration of the differential equations is not required. Simulations using a formation of single link flexible joint robots are used to validate the proposed synchronizing control.

Description

Published Article

Citation

Endorsement

Review

Supplemented By

Referenced By