Isothermal Crystallization Kinetics and Morphology of Double Crystalline PCL/PBS Blends Mixed with a Polycarbonate/MWCNTs Masterbatch

Loading...
Thumbnail Image

Authors

Gumede, Thandi P.
Luyt, Adriaan S.
Tercjak, Agnieszka
Müller, Alejandro J.

Journal Title

Journal ISSN

Volume Title

Publisher

Polymers

Abstract

In this work, the 70/30 and 30/70 w/w polycaprolactone (PCL)/polybutylene succinate (PBS) blends and their corresponding PCL/PBS/(polycarbonate (PC)/multiwalled carbon nanotubes (MWCNTs) masterbatch) nanocomposites were prepared in a twin-screw extruder. The nanocomposites contained 1.0 and 4.0 wt% MWCNTs. The blends showed a sea-island morphology typical of immiscible blends. For the nanocomposites, three phases were formed: (i) The matrix (either PCL- or PBS-rich phase depending on the composition), (ii) dispersed polymer droplets of small size (either PCL- or PBS-rich phase depending on the composition), and (iii) dispersed aggregates of tens of micron sizes identified as PC/MWCNTs masterbatch. Atomic force microscopy (AFM) results showed that although most MWCNTs were located in the PC dispersed phase, some of them migrated to the polymer matrix. This is due to the partial miscibility and intimate contact at the interfaces between blend components. Non-isothermal di erential scanning calorimetry (DSC) scans for the PCL/PBS blends showed an increase in the crystallization temperature (Tc) of the PCL-rich phase indicating a nucleation e ect caused by the PBS-rich phase. For the nanocomposites, there was a decrease in Tc values. This was attributed to a competition between two e ects: (1) The partial miscibility of the PC-rich and the PCL-rich and PBS-rich phases, and (2) the nucleation e ect of the MWCNTs. The decrease in Tc values indicated that miscibility was the dominating e ect. Isothermal crystallization results showed that the nanocomposites crystallized slower than the neat blends and the homopolymers. The introduction of the masterbatch generally increased the thermal conductivity of the blend nanocomposites and a ected the mechanical properties.

Description

Published Article

Citation

Endorsement

Review

Supplemented By

Referenced By